容斥原理的推广

两个集合的容斥原理  

{\displaystyle \left|A\cup B\right|=\left|A\right|+\left|B\right|-\left|A\cap B\right|}

三个集合的容斥原理

{\displaystyle \left|A\cup B\cup C\right|=\left|A\right|+\left|B\right|+\left|C\right|-\left|A\cap B\right|-\left|A\cap C\right|-\left|B\cap C\right|+\left|A\cap B\cap C\right|}

n个集合的容斥原理

      要计算几个集合并集的大小,我们要先将所有单个集合的大小计算出来,然后减去所有两个集合相交的部分,再加回所有三个集合相交的部分,再减去所有四个集合相交的部分,依此类推,一直计算到所有集合相交的部分。

最终得到公式:

{\displaystyle {\begin{aligned}\left|\bigcup _{i=1}^{n}A_{i}\right|={}&\sum _{i=1}^{n}|A_{i}|-\sum _{1\leq i<j\leq n}|A_{i}\cap A_{j}|+\sum _{1\leq i<j<k\leq n}|A_{i}\cap A_{j}\cap A_{k}|-\cdots +(-1)^{n-1}\left|A_{1}\cap \cdots \cap A_{n}\right|.\end{aligned}}}

又可写成

{\displaystyle \left|\bigcup _{i=1}^{n}A_{i}\right|=\sum _{k=1}^{n}(-1)^{k+1}\left(\sum _{1\leq i_{1}<\cdots <i_{k}\leq n}|A_{i_{1}}\cap \cdots \cap A_{i_{k}}|\right)}

{\displaystyle \left|\bigcup _{i=1}^{n}A_{i}\right|=\sum _{\emptyset \neq J\subseteq \{1,2,\ldots ,n\}}(-1)^{|J|-1}{\Biggl |}\bigcap _{j\in J}A_{j}{\Biggr |}.}

参考链接

参考链接

© 版权声明
THE END
喜欢就支持一下吧
点赞13赞赏 分享
评论 抢沙发

请登录后发表评论

    暂无评论内容